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Abstract

This project aimed to develop novel computational statistical inference approaches for dynamic
vehicle state estimation through a combination of machine learning and reduced-order modeling
techniques, to develop adaptive model reduction approaches that use dynamic data to update
reduced-order models for vehicle flight limit prediction, to develop approaches for online manage-
ment of multifidelity models and sensor data, and to apply the new methods to quantify the benefits
of a self-aware unmanned aerial vehicle (UAV) in terms of reliability, maneuverability and surviv-
ability. The project accomplished all objectives and resulted in the development of new DDDAS
methodology and DDDAS algorithms, new models for a DDDAS-enabled self-aware UAV, and a
demonstration of the value of DDDAS in the context of dynamic data-driven structural assessment
to support decision-making for a damaged vehicle taking evasive action in a hostile environment.
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1 Project objectives

The specific research objectives of this research were proposed as:

1. To develop novel computational statistical inference approaches for dynamic vehicle state es-
timation, through a combination of machine learning and reduced-order modeling techniques.

2. To develop adaptive model reduction approaches that use dynamic data to update reduced-
order models for vehicle flight limit prediction.

3. To develop approaches for online management of multifidelity models and sensor data, using
variance-based sensitivity analysis.

4. To apply our new methods to quantify the benefits of a self-aware UAV in terms of reliability,
maneuverability and survivability.

The project has accomplished all these objectives. Objective 3 was achieved using support
vector machines and self-organizing maps, rather than variance-based sensitivity analysis. The
remainder of this report summarizes the main project outcomes and accomplishments.

2 Project Outcomes and Accomplishments

2.1 Summary

The project has resulted in the development of new DDDAS methodology and DDDAS algorithms,
new models for a DDDAS-enabled self-aware unmanned aerial vehicle (UAV), and a demonstration
of the value of DDDAS in the context of dynamic data-driven structural assessment to support
decision-making for a damaged vehicle taking evasive action in a hostile environment. The specific
project accomplishments include the following:

• A conceptual design framework for a DDDAS-enabled UAV. The framework includes
sizing of the UAV at the overall vehicle level and detailed finite element analysis at the panel
level. It also includes a structural response model that incorporates multiple degradation or
failure modes including damaged panel strength (BVID, thru-hole), damaged panel stiffness
(BVID, thru-hole), loose fastener, fretted fastener hole, and disbonded surface.

• A new data-driven approach for the online updating of the flight envelope of a
DDDAS-enabled self-aware UAV subjected to structural degradation. The main
contribution of this part of the work is a general methodology that leverages both physics-
based modeling and data to decompose tasks into two phases: expensive offline simulations
to build an efficient characterization of the problem, and rapid data-driven classification to
support online decision-making. In the approach, physics-based models at the wing and vehi-
cle level run offline to generate libraries of information covering a range of damage scenarios.
These libraries are queried online to estimate vehicle capability states. The state estima-
tion and associated quantification of uncertainty are achieved by Bayesian classification using
sensed strain data.

• A demonstration of the value of DDDAS on a conceptual UAV executing a pull-up
maneuver, where the vehicle flight envelope is updated dynamically with onboard
sensor information. During vehicle operation, the maximum maneuvering load factor is



estimated using structural strain sensor measurements combined with physics-based informa-
tion from pre-computed damage scenarios that consider structural weakness. Compared to
a baseline case that uses a static as-designed flight envelope, the self-aware vehicle achieves
both an increase in probability of executing a successful maneuver and an increase in overall
usage of the vehicle capability.

• A new data-driven strategy for online structural assessment at the panel level for
a DDDAS-enabled self-aware UAV. During the offline phase, high-fidelity finite element
simulations are used to construct reduced-order models and classification criteria: proper
orthogonal decomposition approximations and self-organizing maps are combined to realize a
fast mapping from measured quantities to system capabilities. During the online phase, the
surrogate mapping is employed to directly estimate the vehicle’s evolving structural capability
from sensor data. The approach has been demonstrated for a test problem of a composite wing
panel on an unmanned aerial vehicle that undergoes degradation in structural properties.

• A new algorithm for fast kernel density estimation in high dimensions. We intro-
duced novel methods for pruning and approximating the far field. Our far field approximation
requires only kernel evaluations and does not use analytic expansions. Pruning is not done
using bounding boxes but rather combinatorially using a sparsified nearest-neighbor graph of
the input. The time complexity of our algorithm depends linearly on the ambient dimension.
The error in the algorithm depends on the low-rank approximability of the far field, which in
turn depends on the kernel function and on the intrinsic dimensionality of the distribution of
the points. The error of the far field approximation does not depend on the ambient dimen-
sion. We report results for Gaussian kernel sums for 100 million points in 64 dimensions, for
one million points in 1000 dimensions, and for problems in which the Gaussian kernel has a
variable bandwidth. To the best of our knowledge, all of these experiments are impossible or
prohibitively expensive with existing fast kernel summation methods.

• Fast algorithms for Bayesian inverse medium problems. We consider a supervised
inverse medium problem algorithm using a Bayesian framework and a variational formulation
for a maximum a posteriori (MAP) estimation of the label field. In the Bayesian framework,
we must define the likelihood function (the probability of the data given the label field) and
the prior probability (for the label field). We propose a non-parametric, high-dimensional,
kernel density estimation (KDE) for the likelihood function, based on Gabor features (300
per pixel). This approach better approximates non-local correlations. For the prior function,
we use a simple smoothness prior. We provide experimental evidence that this likelihood
function performs very well and converges to the correct segmentation with the number of
training datasets.

These accomplishments are described in more detail in the following sections.

2.2 Aircraft Design

A conceptual design of a UAV was established to allow for the assessment of structural damage
and degradation cases on realistic maneuvers from a vehicle. The design was completed using
first-principles sizing and Federal Aviation Regulation (FAR) 23 guidelines (similar to NASA CR-
2010-216794/VOL2 and AFOSR Final Report for contract FA9550-10-C-0175). Aurora utilized
an internally developed Bayesian Multi-Disciplinary Optimization (BMDO) code to generate the
conceptual design. The vehicle has a wing span of 55 feet, a cruise speed of 140 knots at an altitude



of 25,000 feet, and a 500 pound payload capability. The range of the aircraft is estimated to be
roughly 2500 nautical miles, corresponding to a duration of 17.5 hours. An illustration of the
vehicle is shown in Figure 1. The estimated weights of the component comprising the conceptual

Figure 1: Conceptual aircraft design.

design are included in Table 1 and the relative percentage of each component is shown in Figure 2.
Characteristic speeds of the conceptual UAV are included in Table 2 and characteristics of the
lifting surfaces of the vehicle are included in Table 3. The design of this conceptual UAV allows for
adequate range and duration to explore capability as a function of the changing structural state of
the vehicle.

The aerodynamic characteristics of the wings are determined using the low Reynolds number
airfoil design and analysis code, XFOIL. XFOIL is an interactive program for the design and
analysis of subsonic isolated airfoils. The Reynolds number, Re, is a dimensionless number that
gives a measure of the ratio of inertial forces to viscous forces:

Re =
vL

ν
(1)

where v is the mean velocity of the aircraft, L is a characteristic linear dimension, and ν is the
kinematic viscosity. Reynolds numbers are use in airfoil design to manage “scale effect” when
computing/comparing characteristics. For this work, the mean velocity is taken as the flight speed,
V , the characteristic length is the average chord length, c, and the kinematic viscosity of the air is
taken at cruise altitude:

Re =
V c

2.126× 10−5m
2

s

(2)

Re =

(
72.0ms

)
(1.614m)

2.126× 10−5m
2

s

= 5.47× 106 (3)



Table 1: Component weights of the conceptual UAV

Component Weight (lbs.)

Fuselage 476.2

Wing 286.6

Payload 500.0

Vertical Tail 22.4

Horz. Tail 7.5

Engine 423.5

Pylon 25.0

Fuel 1060.8

HPE System 225.0

Nose LG 31.4

Main LG 174.1

Sum 3232.5

Figure 2: Pie chart of the estimated weights of the components comprising the conceptual UAV
design.

Results from the XFOIL analysis are displayed in Figures 3 and 4, the lift coefficient versus the
angle of attack and drag coefficient, respectively. In order to approximate the lift at cruise, the
wing lift coefficient, CL, is assumed equal to the airfoil lift coefficient, Cl:

W = L = qSCL ∼= qSCl (4)

where the airfoil coefficient is calculated for 140 KTAS at 15000 feet to be:

Cl =
1

q

(
W

S

)
=

1

41.6 lbs
ft2

(
3232.5lbs

146.7ft2

)
= 0.5291 (5)

The resulting wing incidence required for level fuselage during cruise is 0.885◦. The plots of CL
and CL/CD versus the angle of attack are shown in Figure 5. The maximum lift coefficient (clean)
depends on the airfoil characteristics. The following equations are valid for high-aspect-ratio wings
with moderate sweep:

Lmax = qSCLmax (6)



Table 2: Characteristic speeds of the conceptual UAV

Aircraft Speed Speed [KTAS] Speed [m/s]

VA 66.9 34.4

VS 57.5 29.6

VC
(cruise and loiter)

140.0 72.0

VD 168.0 86.4

Table 3: Characteristic of the conceptual UAV

Metric Variable Value

Takeoff Weight W 3257.3 lbs
Wing Area S 146.7 in2

Wing Sweep Λ 4.3 ◦

Wing Span b 54.2 ft
Wing Root Chord co 3.79 ft
Wing Tip Chord ct 1.52 ft

Wing Aspect Ratio AR 20
Front Spar Location ξfspar 15 %
Rear Spar Location ξrspar 70 %

Wing Airfoil DA01
Horz. Tail Airfoil NACA 0012
Vert. Tail Airfoil NAVA 0012

CLmax = 0.9Clmax cos Λ c
4

= 0.9 (1.8263) cos (4.3◦) = 1.64 (7)

Lmax =

(
41.6

lbs

ft2

)(
146.7 ft2

)
(1.64) = 10002 lbs (8)

nmax =
Lmax
W

=
10002 lbs

3232.5 lbs
= 3.09 (9)

This load factor is less than 3.8, which would correspond to a CLmax of 2.01. Note, these calcu-
lations do not account for control surfaces. A plot from Raymer’s Aircraft Design: A Conceptual
Approach [11] provides maximum-lift trends versus sweep angle for several classes of aircraft, shown
in Figure 6. From the wing loading and maximum lift coefficient, the stall speed of the aircraft can
be determined:

W = L = qstallSCLmax (10)

Vstall =

√
2

ρ

(
W

S

)
1

CLmax

(11)

where the clean wing stall speed at various altitudes is:

qstall =

(
W

S

)
1

CLmax

=

(
3232.5 lbs

146.7 ft2

)
1

1.64
= 13.4

lbs

ft2
(12)

Therefore, the stall velocity is:

Vstall =

√
2qstall
ρ

(13)



Figure 3: Lift coefficient versus angle of attack for Re = 5.47× 106.

Figure 4: Lift coefficient versus drag coefficient for Re = 5.47× 106.

The stall velocity at three different altitudes of interest can be calculated:

Vstall (h = 0ft) = 106.3
ft

s
= 63.0 knots (14)

Vstall (h = 15000ft) = 134.3
ft

s
= 79.6 knots (15)

Vstall (h = 25000ft) = 159.3
ft

s
= 94.4 knots (16)

The stall speed at 15000 feet, Equation 15, is below the designed 140 knots (72.0 m/s) cruise speed,
as indicated in Table 2. This means that the wing will not stall at cruise, but the stall speed is less
than the desired 57.5 knots stall speed. The lack of control surfaces increases stall speed:

Vstall =

√
2

ρ

(
W

S

)
1

CLmax

∝
√

1

CLmax

(17)

Mandatory separation from stall speed, as specified in FAR 23, pushes the minimum maneuver
speed above the design point:

VAmin = VS
√
n (18)



Figure 5: Lift coefficient and lift coefficient divided by drag coefficient versus angle of attack.

VCmin = min

(
33

√
W

S
, VAmin

)
(19)

VDmin = 1.40VCmin (20)

Table 4 contains the minimum speeds for the three altitudes.

Table 4: Minimum maneuver speeds, as mandated in FAR 23, for the conceptual design

Aircraft Speed
Speed

Altitude = 0 ft Altitude = 15000 ft Altitude = 25000 ft
KEAS KTAS m/s KEAS KTAS m/s KEAS KTAS m/s

VAmin
122.8 122.8 63.2 155.1 195.8 100.8 183.9 275.6 141.8

VSmin
63.0 63.0 32.4 79.6 100.5 51.7 94.4 141.4 72.7

VCmin
154.4 154.4 79.4 155.1 195.8 100.8 184.0 275.6 141.8

VDmin
215.9 215.9 111.1 216.9 273.9 140.9 257.3 385.4 198.3

For initial assessment of the DDDAS algorithms, the aircraft performs a standard rate turn. A
sustained standard rate turn is performed by banking the aircraft at an angle, α, and increasing
the lift normal to the wing planform. Increasing the lift is necessary to balance the aircraft weight
while creating a net centripetal force perpendicular to the velocity, V , of the aircraft. The constant
turn radius, r, is equal to the velocity, V , divided by the turn rate, ψ̇:

r =
V

ψ̇
(21)

The turn rate, ψ̇, is calculated as:

ψ̇ =
g
√
n2 − 1

V
(22)

where g is the acceleration of gravity, n is the load factor (ratio of lift of the aircraft to its weight),
and V is the velocity. The variables involved with the standard turn are illustrated in Figure 7.
Equation 22 can be rearranged to give the load factor as a function of aircraft velocity and turn
rate:

n =

√√√√( ψ̇V
g

)2

+ 1 (23)

Performing a standard rate turn allows the aircraft to change its heading at a constant velocity; a
larger bank angle allows for a higher rotational speed and a tighter radius of turn, while increasing



Figure 6: Maximum lift coefficient versus angle of attack [11].

the lift force necessary to keep the aircraft at altitude. Increasing the load factor increases the
loading on the structure of the aircraft.

The lift distribution along the wing for multiple turn rates and multiple radii is estimated
using Schrenk’s approximation based on an elliptical and chord-wise estimation of lift. This lift
distribution is reacted by the wing box structure of the concept UAV in bending and shear. The
cross-section of an example wing box is shown in Figure 8. The wing spar caps react the majority of
bending while the wing spar webs react the majority of shear. These load reactions induce tension
and compression stress in the lower and upper wing skins, respectively, due to bending; shear stress
is induced in the spar web due to the shear loading. The basic relations for calculating the shear
stress in the web and the tensile or compressive stress in the cap are given in Equations 24 and 25.

τweb =
S⊥(η)

Aweb(η)
=

S⊥(η)

c2⊥ (η) t̄webs
(
h̄fspar + h̄rspar

) (24)

Figure 7: Standard rate turn variables.



Figure 8: Cross-section of an example wing box.

σcap =
M⊥ (η)hmax

2 (Icap + rEIweb)
' M⊥ (η) h̄max

2c3⊥ (η) Īcap
(25)

These relations allow for estimating the turn rate or radius of the concept UAV based on the
capability of the structural components to react the loading. As shown in Figure 8, a constant-
percent chord control surfaces can be placed in front of or behind the wing box. Trailing edge flaps
can occupy the last 30% of the chord and increase the lift coefficient and increase the wing area
(Fowler-type extending flaps). The increase in lift coefficient is:

∆Clmax = 1.9
C ′

C
(26)

Leading edge slats can occupy the first 15% of the chord and prevent premature airflow separation
caused by the flap.

∆Clmax = 0.4
C ′

C
(27)

Further investigating the increase in the coefficient of lift due to the addition of flaps, the change
in the lift coefficient can be calculated via Equation 28:

∆CLmax = 0.9∆Clmax

(
Sflapped
Sref

)
cosΛH.L. (28)

Estimation of the maximum increase in lift coefficient, assume the control surfaces run the entire
span, as shown in Figure 9 of the wing and that the leading edge extends the chord by 5%:

Figure 9: Spanwise location of control surfaces.

∆CLmax = 0.9(0.4)(1.05)cos(6.4◦) = 0.38 (29)

and assume the trailing edge extends the chord by 10%:

∆CLmax = 0.9(1.9)(1.1)cos(3.1◦) = 1.87 (30)



The total maximum lift coefficient becomes 3.89 (1.64 + 0.38 + 1.87).
The maximum lift and stall speed should now be revisited. Recalculating the maximum lift and

load factor:

Lmax =

(
41.6

lbs

ft2

)(
146.7 ft2

)
(3.89) = 23740lbs (31)

nmax =
Lmax
W

=
23740 lbs

3232.5 lbs
= 7.34 (32)

Recalculating the stall speeds:

qstall =

(
W

S

)
1

CLmax

=

(
3232.5 lbs

146.7 ft2

)
1

3.89
= 5.66

lbs

ft2
(33)

Vstall (h = 0ft) = 69.0
ft

s
= 40.9knots (34)

Vstall (h = 15000ft) = 87.2
ft

s
= 51.6knots (35)

Vstall (h = 25000ft) = 103.4
ft

s
= 61.3knots (36)

From the updated stall speeds, V-n diagrams are created for the three altitudes. These V-n diagrams
are shown in Figures 10 through 12. The updated minimum speeds at the three altitudes are

Figure 10: Flight envelope at an altitude of 0 feet.

updated in Table 5. VAmin is less than the designed 140 knots cruise speed. Therefore, the aircraft
is able to maneuver at speeds of 140 knots (KTAS) at 15000 feet (minimum maneuver speed is
127.1 knots). While the cruise speed of the initially designed UAV was too low to meet FAR 23
due to wing loading, the necessary lift coefficient at 15000 feet was reduced by 50%. The viable
design is therefore used in moving forward with the example problem.



Figure 11: Flight envelope at an altitude of 15000 feet.

Table 5: Minimum maneuver speeds, as mandated in FAR 23, for the conceptual design with flaps

Aircraft Speed
Speed

Altitude = 0 ft Altitude = 15000 ft Altitude = 25000 ft
KEAS KTAS m/s KEAS KTAS m/s KEAS KTAS m/s

VAmin
79.7 79.7 41.0 100.7 127.1 65.4 119.4 178.8 92.0

VSmin
40.9 40.9 21.0 51.6 65.2 33.5 61.3 91.8 47.2

VCmin
154.4 154.4 79.4 154.4 194.9 100.3 154.4 231.3 119.0

VDmin
215.9 215.9 111.1 215.9 272.7 140.3 215.9 323.5 164.4

2.3 Finite Element Modeling

The magnitude of wing loading on the concept UAV is directly related to the turn rate; therefore
a section of the wing is used as an example panel on which to test the algorithms developed under
the DDDAS program. This allows for damage or degradation that reduces the structural capability
of the panel to react a sustained load without failure to directly affect the ability of the concept
UAV to perform a standard rate turn.

In order to reduce the magnitude of loading in anticipation for experimental testing, a section of
the wing is chosen outboard at a location where the wing skin is sized for strength (further outboard
the wing skin is sized by minimum gage or handling loads rather than flight loading). At a location
roughly 260 inches outboard along the wing, the wing skin consisting of 4 plies of MTM45-1/AS4
carbon composite in a quasi-isotropic layup is necessary to meet the loading requirements due to
FAR 23 design requirements, while not exceeding strain design allowable values for the plies. For
the finite element models, a “cut-out” section of the wing is modeled. The relative location of this
“cut-out” along the span of the wing is shown in Figure 13.

Three structural conditions were initially considered for the example panel: pristine, moderate,
and severe damage. Damage cases are defined as delamination of the first ply, which is typical of a
low-velocity impact on the panel or interlaminar separation caused by stress concentrations under



Figure 12: Flight envelope at an altitude of 25000 feet.

cyclic loading due to embedded foreign object debris or other defects. The panel conditions are
modeled using the finite element method and strain values for the panel are estimated for a variety
of loading conditions that can be traced back to loading from a variable turn rate. The level of
delamination and resulting strain fields for the three conditions are shown in Figure 14. The images
of the panel finite element model show the extent and location of the varying delamination size,
where the red and light orange color indicates delamination between the first and second plies. The
panels were reinforced around the boarders of the panel with through holes to simulate mounting
the wing skins to the structure. The panel predicted strains indicate strain gradients that are
expected to be present within the panel for the given loading. These sets of strains can then be
used by the vehicle system to identify the condition of the panel based on measured strain values
from strain gauges or other sensors on-board the vehicle. Once the panel condition is determined,
the capability of the vehicle to perform a sustained turn necessary to follow a flight path can be
determined and a go/no-go decision can be made.

The material properties used within the finite element models are provided by the material

Figure 13: Relative location of the “cut-out” panel along the span of the wing.



Figure 14: Finite element models and resulting strain fields for the three structural conditions.

manufacturer (www.umeco.com). To account for uncertainty within the finite element models, a
normal distribution and coefficient of variance (Cv) of 5% is assumed and values corresponding to
99.86% confidence (3σ) are used. A summary of the properties is provided here:

• Composite properties:

– Advantages: high strength/weight ratio; directional strength / stiffness tailoring; fatigue
resistant

– Disadvantages: more complex; brittle; most design allowables / testing is proprietary

– MTM45-1/CF0525-36%RW, 193gsm 3K AS4 plain weave carbon fiber

∗ Matrix: MTM45-1 flexible curing temperature, high performance, toughened epoxy
matrix system optimized for low pressure, vacuum bag processing

∗ Fiber: AS4 carbon fiber filaments made from PAN (polyacrylonitrile) precursor,
surface treated; 3,000 filaments/tow

∗ 36% Resin Weight (54.34% Fiber Volume)

∗ 193 grams per square meter (gsm) areal weight (0.201 mm ply thickness)

∗ Plain Weave warp and weft criss-cross in over-under pattern

2.4 Structural Response Model

A structural response model was created for the conceptual UAV using ASWING. ASWING is
a program for the aerodynamic, structural, and control-response analysis of aircraft with flexible
wings and fuselages of high to moderate aspect ratio. The program couples the structural and
aerodynamical response of the vehicle. Thus, the loading on the aircraft wing can be investigated for
different flight conditions. MATLAB scripts link the finite element models discussed in Section 2.3
with the ASWING models. The degradation of mechanical properties results in aerodynamic
changes (i.e., shape of loaded wing will be different due to changes in structural response). The



coupled models allow for vehicle response to be investigated. The results from these coupled models
indicate that the capability of the UAV will change between 2 and 12% (corresponding to strain
levels within the panel changing between 1 and 20%) for the levels of structural damage investigated.

The model includes multiple degradation or failure modes including: damaged panel strength
(BVID, thru-hole), damaged panel stiffness (BVID, thru-hole), loose fastener, fretted fastener hole,
and disbonded surface. The algorithm is implemented in object-oriented MATLAB coding using
handle classes for speed and compatibility with the following algorithmic elements:

• Framework (main.m)

– Maintains “truth” data regarding flight, environment, and events (inputs)

• Inputs (Environment.m, MeasuredDamage.m, VehicleManeuver.m)

– Measures inputs using sensors or flight controller; should include signal uncertainty,
noise, and fault/failure models

– Can be replaced by hardware-in-the-loop

• Algorithm (VehicleCapability.m)

– Interrogates input classes and operates on the information to provide:

∗ diagnostic information (Monitor method);

∗ current or future vehicle state information (State method);

∗ airframe capability (Capability method); and

∗ prognostic information (Eval method)

Structural Modeling Routine

Tasks 2-4 are iterative.

1. Initialize

• Read finite element model (nas file)

• Generate nominal node map and element strength capability

2. Monitor(damage,environment)

• Receive measured damage information (type, size, location)

• Receive temperature information (gross temperature)

• Modify local strength capability

• Modify local stiffness or remesh (not implemented yet)

3. State(maneuver)

• Export and run updated finite element model

• Import finite element model stresses

• Set current maneuver state

4. Capability



• Calculate finite element model failure indices against load cases

• Notch load cases based on reduced capability (not implemented yet)

5. Evaluate

• Estimate Remaining Useful Life (RUL) using simulated load spectrum (not implemented
yet)

• Cost function information to decision making algorithms (not implemented yet)

Multiple diagnostic models can be integrated into the Monitor method. Error checking mod-
els can be integrated into the State method to compare updated model state predictions and
additional sensors. Multiple prognostic models can be integrated into the Eval method, e.g.,
Sendeckyj/Whitworth residual strength models for composite fatigue and composite damage pro-
gression models for overloading conditions. A load spectrum generated using multiple loading
scenarios generated by decision making agent to determine cost of short- and long-term operation.
Current state and RUL estimates are then combined with updated usage scenarios.

2.5 Experimental Testing

Experimental testing was planned to follow model development. This was an additional activity
that was not part of the original proposal; however, it was added because if the potential value
in validating our modeling and algorithm contributions. As of the writing of this report, multiple
experimental specimens containing different types of damage have been manufactured and a custom
made load frame is under development. Testing of the specimens will occur as follow-on work at a
later time.

The mechanical aspects of the load frame are complete, with all components assembled. Addi-
tional software development is required in order to control the load frame. The original goal was
to have a table-top experiment. In order for the frame to supply loads large enough to damage the
composite panels, the frame evolved to be a free-standing, self-reacting, load frame, as shown in
Figure 15. The frame is still of a size that it can be transported and assembled on-site (unlike typ-
ical mechanical testers that require permanent installation). Quasi-dynamic tensile loading allows
the loading experienced by the panel at the specified location on the wing and for specific vehicle
maneuvers to be simulated. The load frame can apply uniaxial tensile loading. The “cut-out”
section of the wing was selected such that uniaxial tension is a good approximation of the actual
loading experienced. The magnitude of loading is to be directly related to executed maneuver. The
software drivers will match the applied loading to anticipated loading resulting from maneuvers of
the aircraft.

The load frame use a Duff-Norton worm gear actuator to impart load into the system. The
actuator is rated for 5 tons (10000 lbf) and is driven via a DC motor. The motor is a Leeson 21
amp, 12 V-DC drive. An Elmo motion controller (DC-WHISTLE 20/60) controls the DC motor
and interfaces with a personal computer in order to send control signals. A LabVIEW VI is under
development to provide the motor control signals as well as record the data from the load cell and
displacement sensor. The control will permit either load control or displacement control based
on real-time data from the load cell or the LVDT, respectively. Controller feedback is provided
via encoder (attached to actuator worm gear), LVDT, and/or load cell. The position sensor is a
MacroSensors DC750-500 LVDT. The load cell is a Sensor Development 10188-014, 10 kip threaded
rod load cell (uniaxial tensile load). The encoder is an Accu-Coder. The flight profile determined
from the vehicle path planner will set the load path (load history). The load path will be executed
in real-time, with real-time sensor data provided to the multi-fidelity models.



Figure 15: Load frame with composite specimen and DAQ system.

A National Instruments cDAQ system with multiple modules provides input/output control
between the computer and the test instrumentation. One aspect that will be investigated before
experimental testing is started is integrating optical strain measurements in order to measure full
field strains, as opposed to single point measurements via strain gages.

The test specimens were manufactured at Aurora’s Mississippi plant. Layups of four large panels
were fabricated and sectioned into a total of 200 test specimens. While manufacturing these panels,
two types of damage were included. Controlled areas of delamination were created by including
teflon shapes between the first and second plies, as shown in Figure 16. The second form of damage
was simulated fiber fracture that was implemented by cutting lengths of fibers within a single ply.
The specimens were autoclave cured. An image of the panels placed within the autoclave after the
cure cycle is shown in Figure 17.



Figure 16: MIT graduate student Marc Lecerf places teflon inserts between plies to create delam-
ination.

Figure 17: Panels being cured in Aurora’s autoclave.



2.6 Multifidelity DDDAS Methods

Figure 18 shows our approach that combines offline computation with online sensor data to provide
a time-constrained, updated estimate of UAV flight capability. More specifically, we combine
information from physics-based models, simulated offline to build a scenario library, together with
dynamic sensor data in order to estimate current flight capability. We also use dynamic data to
modify our information-gathering strategies to manage uncertainty in our capability estimates.

Figure 18: To achieve a self-aware vehicle capability, we use offline physics-based modeling com-
bined with dynamic sensor data to achieve dynamically updated estimates of vehicle capabilities
(e.g., the vehicle flight envelope).

2.6.1 Problem setup

We consider two kinds of quantities of interest:

• The quantities that are measured during flight, referred to as the measured quantities of
interest. We denote these by qm(x), m = 1, . . . ,M , where qm is the mth measured quantity
of interest (generally a vector representing a discretized field quantity) and we consider M
such quantities.

• The quantities employed in the decision process that give information about capability and
performance constraints, referred to as the capability quantities of interest. We denote these
by sc(x), c = 1, . . . . , C, where sc is the cth capability quantity of interest (generally a vector
representing a discretized field quantity) and we consider C such quantities.

Both quantities of interest are functions of the vehicle state, x, which includes quantities de-
scribing the current damage state (e.g., damage location, extent and depth). In an offline phase, we
use high-fidelity models to obtain detailed information about the system and its possible responses
for different flight conditions and different damage states. The simulated information is stored in a
damage library and is used to build a mapping from measured quantities of interest to capability
quantities of interest via surrogate models. In the online phase, these surrogate models provide
rapid estimates of vehicle capability given real-time measurements. The next two subsections de-
scribe in more detail the models and methods employed in our offline and online phases.

2.6.2 Offline stage

Our offline phase considers a suite of multifidelity physics-based models, at varying levels of physics
resolution, and ranging from the panel level to the full vehicle level. We store offline analysis



Figure 19: The representation of our concept UAV within ASWING. The structure is specified as
a set of interconnected slender beams, where lifting surfaces have additional aerodynamic properties
specified along their span. The plots to the right show the aeroelastic trim solution computed by
ASWING for a pull-up maneuver at a fixed flight velocity and load factor.

information in a damage library. We use a variety of strategies to build surrogate models from
this information, including support vector machines, proper orthogonal decomposition (POD) and
self-organizing maps.

Vehicle-level models. At the vehicle level, a combination of ASWING [3] and the Variational
Asymptotic Beam Cross-Sectional Analysis (VABS) [2] provides estimates of internal wing stresses
and deflections as a function of input aircraft kinematic states and estimates of damage to the
nominal aircraft structure.

ASWING [3] is a nonlinear aero-structural solver for flexible-body aircraft configurations of
high to moderate aspect ratio. ASWING uses unsteady lifting line aerodynamics together with
a finite difference Euler-Bernoulli beam structural model. The aerodynamic model is extended
with Prandtl-Glauert compressibility treatment and a sectional stall model. The nonlinear Euler-
Bernoulli beam model permits analysis of large deflections. Figure 19 shows the ASWING represen-
tation of our concept UAV and the corresponding aerostructural assessment for an example pull-up
maneuver. The ASWING model is a set of interconnected slender beams—one each for the wing,
fuselage, horizontal stabilizer, and vertical stabilizer. Lifting surfaces (the wing and stabilizers)
have additional cross-sectional lifting properties that are pre-specified.

VABS [2] models the wing box as an array of two-dimensional cross-sectional finite element
models. The cross-sections capture the details of a multi-ply composite wing skin and local damage
effects. VABS computes lumped stiffness and inertial properties at a reference point in each cross
section, forming a global line representation of the beam. A standard beam problem solver finds
the global force and moment distribution along this reference line given input forces and moments.
Using the reference line solution, the internal strain field can be recovered in the beam cross sections
using relations initially computed by VABS. Figure 20 provides an overview of the VABS modeling
framework. In this work, we use the specific UM/VABS implementation developed in FORTRAN
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Figure 20: Variational Asymptotic Beam Cross-Sectional Analysis (VABS) allows for dimensional
reduction of an expensive three-dimensional beam solution into two-dimensional finite element
models coupled with an external beam solver.
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Figure 21: Panel layout and layer sequence. Panel state variables include the damage location,
damage size, and load definition.

by R. Palacios and C. Cesnik at the University of Michigan [10].
In our integrated modeling setup, ASWING manages the one-dimensional beam solution, com-

puting loads in the wing box for specific flight conditions, while VABS resolves local stiffness loss
due to damage on the aircraft wing.

Panel-level models. At the panel level, we use a finite element model that simulates and ana-
lyzes the panel behavior under specified loading and damage scenarios using a plate model. The
composite panel comprises carbon fiber plies with a specified stacking sequence. Four clamped
edges define boundary conditions that simulate the presence of fastening bolts along the panel
perimeter. Figure 21 shows a panel layout and corresponding panel cross-section for a case with
four plies with the symmetric stacking sequence [±45◦, 0◦/90◦, 0◦/90◦,±45◦]. The border area that
hosts the holes is reinforced with two additional plies with orientation 0◦/90◦ and ±45◦. The grey
shaded area on the right plot of Figure 21 denotes the damaged region, which is centered at (yd, zd)
and has extent ∆y ×∆z.



The loads l on the panel are defined by the prescribed aircraft maneuver. The presence of
damage is simulated by weakening the stiffness properties of the finite elements that belong to
the prescribed damaged area. This model is used to explore different damage scenarios. For each
scenario, we generate a snapshot set by evaluating the measured quantities of interest and the
capability quantities of interest. The measurement quantities of interest are the components of
strain evaluated for each element in the computational mesh. The capability quantities of interest
are the failure indices, also evaluated for each element in the computational mesh. Failure index
is an indicator of the structural condition that is translated into a scaling factor for maneuver
parameters. It is defined as the ratio between the experienced stress and the maximum allowable
stress (typically the compression/tension/shear strength that characterizes the material properties).

Damage library. The purpose of the damage library is to store information from analyses run
offline using the panel-level and vehicle-level models. This information may be accessed by online
analyses in a variety of different ways (e.g., directly accessing the predictions associated with
a damage scenario, or using library entries to perform dynamic adaptation of a reduced-order
model). The damage library is populated by offline analysis of a range of damage scenarios and
kinematic states relevant to the planned mission of the vehicle. Information regarding the planned
mission can be used to determine the type of damage that may occur and the types of maneuvers
that may be performed. This information, along with resource constraints on the library, can
be used to optimize the contents of the damage library given mission level objectives. In our
current implementation, the library contains model predictions of sensed strain and maximum
failure indices for each scenario considered. Ongoing work is investigating the utility of including
model predictions of other quantities.

Classification and surrogate modeling. We embody the information generated by these
physics-based models using various surrogate modeling techniques. At the panel level, we build low
dimensional representations of the measured and capability quantities of interest, using the POD.
We then use self-organizing maps to cluster the resulting data and to build a surrogate model that
maps measurements to capability estimates. The steps in this process are outlined in Figure 22.
The details of the panel-level approach are described in [8].

At the vehicle level, we use the maximum computed failure index to classify all simulated
conditions into safe (maximum failure index < 1) and unsafe (maximum failure index ≥ 1). We
build a representation of the failure boundary (maximum failure index = 1) as a function of damage
parameters and vehicle operating conditions. Our current implementation uses a simple bisection
method to define the failure boundary; future work will use adaptive sampling with support vector
machines as in [4]. The steps in this process are outlined in Figure 23 and are described in more
detail in [7].

2.6.3 Online stage

In the online stage, our goal is to move from sensed data to updated estimates of structure capability
at the local panel level and updated flight envelopes at the vehicle level. The key is to achieve these
estimates sufficiently rapidly to support dynamic decision-making, while leveraging the rich amount
of physics-based information contained within our damage library. We also aim to characterize our
level of confidence in our updated estimates.

At the panel level, the low-dimensional POD representations combined with the self-organizing
map clustering achieve the desired rapid assessment. Figure 22 shows the online flow of analysis
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that moves from sensed strain data to estimates of panel failure indices. The reconstruction of the
POD coefficients in the second step is achieved using the gappy POD approach [1, 5].

At the vehicle level, we use a Bayes classifier that assigns a posterior estimate of the probability
of being in any damage state contained in our damage library. A simple approach, described in [7],
assigns equal prior probability to each damage state in the library and classifies the vehicle’s damage
state as the state in the library with the maximum posterior probability. A more sophisticated
approach incorporates mission information, current maneuver, and a mixture model of the posterior
damage state. The additional mission and maneuver information permit us to relax the assumption
of equal prior damage state probabilities. The mixture model of the posterior damage state enables
interpolation among records in the damage library, permitting us to characterize a richer range of
vehicle damage states.

2.6.4 Results

The offline vehicle model allows for determination of the vehicle capability over a range of damage
events using classification. Figure 24 shows an example of this process. We simulate a pull-up
maneuver at constant velocity V = 260 ft/s with varying load factor n ∈ [1, 3.5] over a range of two
chordwise damage size parameters, with fixed spanwise size parameters and constant depth. Each
damage and maneuver combination is classified as “safe” or “unsafe” based on the value of the
maximum failure index in the wing structure. Using this classifier variable, the boundary surface
between safe and unsafe maneuver regions for any given damage case can be determined using a
bisection algorithm.

Figure 25 presents results for an example case at the panel level. The surrogate models are
obtained offline using an evaluation set of 3000 different damage cases for fixed panel layout and
loading condition (Figure 21). We show here results for the case of a 3.5220 × 7.7540 square-inch
damage located at (yd = 10.5900, zd = 12.9100) and involving plies 4, 5 and 6. The figure shows
the original finite element solution for the failure index field over the panel. We use this solution to
generate synthetic data with which to test our approach. The bottom right plot of Figure 25 shows
the corresponding online estimate of the failure index given by our surrogate modeling approach,
reconstructed using strain sensor measurements that cover 50% of ply 4. The other two plots in
Figure 25 are included to give insight to the errors due to the POD approximation and the self-
organizing map as follows. The top right plot represents the best approximation of the original
finite element solution in the POD basis—this would be achieved only if we could reconstruct the
POD modal coefficients exactly. The bottom left plot shows that a small amount of additional error
is introduced by using the self-organizing map to map from POD measurement coefficients to POD
capability coefficients. The final plot in the lower right also includes the error due to inferring the
POD measurement coefficients from sparse data. Overall, the reconstructions of the failure indices
are sufficient to provide a first-cut assessment for online decision-making.

We also present representative results at the vehicle level. One potential application of our
method is for missions in contested environments, where threats to the vehicle due to hostile agents
require a fast, defensive reaction to avoid dangerous regions of the flight zone. In addition, the
vehicle may sustain damage on the wing surface that impedes its ability to operate at its initial
design capability. Figure 26 presents a schematic of this scenario, where the vehicle initiates the
evasive action at an airspeed of 210 ft/s and an initial load factor of 1.3 (representative of a nominal
maneuvering speed and an upper bound on the nominal maneuvering load factor during normal
operation while navigating a sequence of waypoints).

We demonstrate how the decision strategy, informed by the capability estimate, trades off
between survivability and full utilization of the vehicle capability. For details on these results,
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see [6,7]. We quantify survivability by evaluating probability of maneuver success over all possible
damage cases. We quantify utilization using the average ratio between the vehicle’s operational
load factor and the vehicle’s true maximum load factor.

The probability of maneuver success, p (MS ), is defined as the probability that the agent chooses
a value of operating load, nop, that is less than the maximum vehicle load factor ntruthmax . The utiliza-
tion is defined as the average ratio between the vehicle’s operational load factor and the vehicle’s
true maximum load factor. Figure 27 plots the probability of maneuver success, p (MS ), versus
the utilization, n̄util, for the two decision strategies: a static estimate based on the vehicle design
flight envelope, and our DDDAS strategy that uses a dynamic estimate of the vehicle structural
capability based on dynamic strain data. A third curve is plotted that shows the performance of a
hypothetical estimator that knows the damage case with absolute certainty; that is, its only error
is due to the surrogate model approximation of the corresponding capability set (in this case using
a probabilistic support vector machine).

The ideal decision strategy would have both perfect usage of available capability (i.e., n̄util = 1)
and certain maneuver success (i.e., p (MS ) = 1); this is marked as the “Utopia” point in the upper
right corner of Figure 27. A sample on the plot is considered to be non-dominated if no other
sample has both a higher p (MS ) and higher n̄util value (or higher value of one and equal value of
the other); the non-dominated combinations of (nutil,p (MS )) for each estimator are connected by



Figure 26: Schematic of the flight scenario to which we apply our DDDAS capability estimation
framework.

a dashed line of the corresponding color.
Figure 27 shows that the static capability case has p (MS ) = 1 at values of n̄util < 0.75. This

is because if the agent sets a sufficiently low static load factor, the realized load is less than ntruthmax .
Thus, within the scope of our analysis the vehicle never exceeds the flight envelope, although the
loads are limited to conservative values and utilization is low. The figure also shows that the static
capability case has a long trail of samples near p (MS ) = 0 at high values of n̄util. This is because
at values of nstaticop close to 2.9, the vehicle almost certainly exceeds the flight envelope unless it is
in the pristine case, which has a small probability (< 0.01) of occurring. We see that the dynamic
estimator results in an even spread of points across the non-dominated front, with a sharp “knee”
at n̄util ≈ 0.95 where the probability of maneuver success drops rapidly.

We can use the non-dominated fronts Figure 27 as a measure of performance of each capability
estimate when used for decision-making in the flight scenario. For instance, if the agent wants
to utilize 95% of the maximum vehicle load factor on average, there would be an 80% chance
of maneuver success using the dynamic estimate of the load factor as opposed to a 40% chance
of success when operating at a static load factor. On the other hand, if the agent can accept
operating at less than 80% of the maximum capability on average, then both estimators show
similar performance. We note this is most likely because the damage cases in the library cause a
limited reduction in the vehicle capability, and simulating more severe damage cases would continue
to emphasize the performance gain from using the dynamic capability estimate. Lastly, Figure 27
shows that if the damage were known perfectly, the error introduced by the surrogate modeling
approximations would be relatively small for this example. The difference between the dynamic
capability curve and the known damage curve is an indication of the value (in terms of vehicle
capability utilization and maneuver success probability) of increased quality and quantity of sensors.
Comparisons of this kind could be used to support design decisions regarding the cost versus value
tradeoffs of including more onboard sensors.
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2.7 Fast parallel algorithms for data assimilation using Bayesian approaches

Aircraft state characterization technologies require fast algorithms for the solution of inverse medium
problems for damage characterization. Assuming a known constitutive law for the mechanical re-
sponse of a “healthy” structure, one can solve an inverse medium problem to find perturbations in
the material properties that appear in the the constitutive law.

Such problems can be formulated as inverse medium problems. We consider their general formu-
lation in a Bayesian setting. In particular we considered an idealized inverse medium problem that
models the reconstruction of the unknown structure state of an aircraft given partial observations
of the state. For that we considered fast algorithms for deterministic inverse problems, construction
of likelihood and prior probability functions for spatial field, and kernel density estimation.

Below we discuss some representative results from work partially funded by this award.

• We developed a new algorithm for fast kernel density estimation in high dimensions summa-
rized in [9]. A direct evaluation of the sum scales quadratically with the number of points.
Fast kernel summation methods can reduce this cost to linear complexity, but the constants
involved do not scale well with the dimensionality of the dataset. The main algorithmic com-
ponents of fast kernel summation algorithms are the separation of the kernel sum between
near and far field (which is the basis for pruning) and the efficient and accurate approxima-
tion of the far field. We introduced novel methods for pruning and approximating the far
field. Our far field approximation requires only kernel evaluations and does not use analytic
expansions. Pruning is not done using bounding boxes but rather combinatorially using a
sparsified nearest-neighbor graph of the input. The time complexity of our algorithm depends
linearly on the ambient dimension. The error in the algorithm depends on the low-rank ap-
proximability of the far field, which in turn depends on the kernel function and on the intrinsic
dimensionality of the distribution of the points. The error of the far field approximation does
not depend on the ambient dimension. We presented the new algorithm along with experi-
mental results that demonstrate its performance. We report results for Gaussian kernel sums
for 100 million points in 64 dimensions, for one million points in 1000 dimensions, and for
problems in which the Gaussian kernel has a variable bandwidth. To the best of our knowl-
edge, all of these experiments are impossible or prohibitively expensive with existing fast
kernel summation methods.

• We developed fast algorithms for Bayesian inverse medium problems [12]. We consider a
supervised inverse medium problem algorithm using a Bayesian framework and a variational
formulation for a maximum a posteriori (MAP) estimation of the label field. In the Bayesian
framework, we must define the likelihood function (the probability of the data given the label
field) and the prior probability (for the label field). In this work, we focus on the likeli-
hood. Typically, the likelihood of the intensity is decoupled for every inverse medium point
and is given by a parametric density (often a Gaussian function). Instead, we propose a
non-parametric, high-dimensional, kernel density estimation (KDE) for the likelihood func-
tion, based on Gabor features (300 per pixel). This approach better approximates non-local
correlations. For the prior function, we use a simple smoothness prior. We provide experi-
mental evidence that this likelihood function performs very well and converges to the correct
segmentation with the number of training datasets.
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5 Transitions

• Willcox hosted a DDDAS Collaboration Meeting at MIT in May 2014. The meeting brought
together a small group of DDDAS researchers with local industry and government partici-
pants, with a focus on applications in the aerospace domain. The goals of the meeting were:
(1) to identify potential beneficial opportunities to transition existing DDDAS methods and
algorithms, including potential future collaborations, and (2) to discuss open challenges in
managing the data-to-decisions flow in future aerospace systems. Government and industry
participants included AFRL, Lincoln Laboratories, Draper Laboratories, Raytheon, and Au-
rora Flight Sciences. The meeting resulted in productive discussions and identified several
avenues for future collaborations among academic and industry/government participants.

• The aircraft design framework developed in part under this research has been used by de-
signers at Aurora Flight Sciences to conduct a large number of design studies, in which rapid
turnaround of a feasible configuration and performance estimates were required. Aurora have
further built upon these toolsets to include several levels of fidelity and to allow implementa-
tion of a large number of multidisciplinary design optimization (MDO) algorithms.

• Aurora Flight Sciences have an ongoing Air Force SBIR effort that has just reached the
end of Phase I (we are working on Phase II proposal) that continues to develop/realize the
self-aware vehicle concept. The effort has focused on the framework that connects/informs
an in-situ mission planner of the capability of multiple subsystems of a vehicle. Because of
the DDDAS effort, our technical effort in this SBIR has focused on developing the engine
health/degradation models and the interface control with the mission planner. The research
has been directed such that we can plug in the DDDAS structural results down the line. The
DDDAS effort is a key component necessary for our framework to work.

6 Supported personnel

Aurora Flight Sciences: Jeffrey Chambers, David Kordonowy.

Massachusetts Institute of Technology: Graduate Students: Marc Lecerf (now at Raytheon). Post-
doctoral Researchers: Laura Mainini, Benjamin Peherstorfer, Demet Ulker. Research Scientist:
Douglas Allaire (now at Texas A&M University). Undergraduate Researcher: Harriet Li.

University of Texas: Graduate Students: Dhairya Malhotra, Bo Xiao, Amir Gholami. Postdoctoral
Researchers: Hari Sundar (now at University of Utah), Bill March.
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